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1. Introduction

For a long time, many authors have payed much attention to the existence prob-
lem of periodic solutions for the perturbed systems of ordinary as well as functional
differential equations. In recent years, we see an increasing interest in the more
difficult problem “at resonance” in the sense that the associated linear homoge-
nous system has a nontrivial periodic solution. In this side, some useful techniques,
say the averaging method, have been developed and many significant results have
been obtained for the existence of periodic solutions to some nonlinear systems of
first order differential equations at resonance that involve a small parameter (see
[1,2] and references therein).

Much research has also been devoted to the study of existence results for some
nonlinear systems whose nonlinearities satisfy so-called Landesman-Lazer condi-
tions. Several of these results are mentioned in [3]. However, less is known when
the linear part has a two-dimensional kernel. Some work has been done by Lazer
& Leach [4], Cesari[5], Iannacci & Nkashama[6], Nagle & Sinkala[7,8] and Ma, Wang
& Yu[9]. To the best of our knowledge, few authors have considered the case when
the linear part has dimension greater than two. In this direction, an example with
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a three-dimensional kernel and a fourth order ordinary differential equation are
considered in [8] and [10] respectively. In a recent paper[12], the results in [8] have
been improved and unified by Ma, Wang & Yu.

This paper is concerned with the existence of 2π-periodic solutions for the non-
linear system of first order functional differential equations of mixed type

(1.1) ẋj(t) = Bjxj(t) + Fj(t, x(t + ·)) + pj(t), j = 1, 2, · · · , n

where xj(t) ∈ R2, x(t + ·) ∈ BC(R, R2n) is defined by x(t + s) = (x1(t + s), x2(t +
s), · · · , xn(t + s)), pj ∈ C(R, R2) is 2π-periodic, and Fj : R × BC(R, R2n) → R2

is continuous, bounded and 2π-periodic in its first variable t. The constant matrix
Bj has a pair of purely imaginary eigenvalues ±imj with mj some positive integer.
Without loss of generality, we assume

Bj =

(

0 mj

−mj 0

)

, j = 1, 2, · · · , n.

In this paper, we also need the following hypothesis
(F) There exists a permutation k1, k2, · · · , kn consisting of 1, 2, · · · , n and for any

positive integer j with 1 ≤ j ≤ n, there exist τj ∈ R, Hj ∈ BC(R2, R2) with the
asymptotic limits Hj(±,±) = limr,s→±∞ Hj(r, s) and Gj : R×BC(R, R2n) → R2,
which is continuous, bounded and 2π-periodic with respect to its first variable t,
such that for any t ∈ R and ϕ ∈ BC(R, R2n),

Fj(t, ϕ) = Hj(ϕ2kj−1(−τj), ϕ2kj
(−τj)) + Gj(t, ϕ).

2. Main Results

In order to state our main results, we need some notations. For any positive
integer N , we will denote by | · | the Euclidean norm in RN . We always denote by
A the matrix

A =

(

0 1
−1 0

)

.

Let m and l be some positive integers. If p ∈ C(R, R2) is 2π-periodic, we set

(2.1) p(m) :=
1

2π

∫ 2π

0

eAT (ms)p(s)ds.

where “T” denotes the transpose and e· denotes the exponential of an operater.
For H ∈ C(R2, R2), whenever the asymptotic limits

H(±,±) = lim
r,s→±∞

H(r, s)
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exist, we set

(2.2)

WH :=
1

2π

[(

1 −1
1 1

)

H(+, +) +

(

−1 −1
1 −1

)

H(+,−)

+

(

−1 1
−1 −1

)

H(−,−) +

(

1 1
−1 1

)

H(−, +)

]

;

(2.3)

WH(m, l) :=
1

2π

[

∫ π/2

0

L(m, l)(s)dsH(+, +) +

∫ π

π/2

L(m, l)(s)dsH(+,−)

+

∫ 3π/2

π

L(m, l)(s)dsH(−,−) +

∫ 2π

3π/2

L(m, l)(s)dsH(−, +)

]

,

where the matrix value mapping L(m, l) : R → R2×2 is defined by

(2.4) L(m, l)(s) =
1

l

l−1
∑

k=0

eAT ( m
l

(s+2kπ)).

It is easy to verify that if m = l, then W H(m, l) = W H . Finally, let X be a normed
space, if G : X → RN is continuous and bounded, we denote by MG the supremum
of G, i.e.,

(2.5) MG := sup
x∈X

|G(x)|.

Theorem 2.1. If, in addition to (F), we assume that for any 1 ≤ j ≤ n,

(2.6) |mj − mkj
| <

1

2
mkj

and

(2.7) |W Hj (mj , mkj
)| >

1

2
(MGj

+ |pj(mj)|) +
1

2

(

n
∑

i=1

(MGi
+ |pi(mi)|)2

)1/2

hold, then Eq.(1.1) has at least one 2π-periodic solution.

The following is a direct corollary of Theorem 2.1.

Corollary 2.1. If, in addition to (F), we assume that for any 1 ≤ j ≤ n, (2.6)
and

(2.8) |W Hj (mj , mkj
)| >

1

2
MGj

+
1

2

(

n
∑

i=1

M2
Gi

)1/2

+





n
∑

j=1

|pj(mj)|2




1/2

hold, then Eq.(1.1) has at least one 2π-periodic solution.
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3. Proof of Main Results

Let X and Z be real normed spaces with respective norms ‖ · ‖X and ‖ · ‖Z ,
and L : domL ⊂ X → Z be a linear Fredholm mapping of index zero. Let P be
a continuous projection in X onto ker L, I − Q be a continuous projection in Z
onto ImL, and KP : ImL → domL ∩ kerP be the (unique) pseudo-inverse of L
associated to P in the sense that LKP z = z for all z ∈ ImL and PKP = 0. Let
J : ImQ → ker L be an isomorphism. In addition, we assume that N : X → Z is
L-completely continuous and that 〈·, ·〉 is an inner product on ker L.

The folowing useful lemma is proved in [11].

Lemma 3.1 [11]. Assume that dim kerL ≥ 2 and there exist M > 0, a bounded
open subset Ω0 ⊂ ker L with 0 ∈ Ω0 and ∂Ω0 a connected subset in ker L, such that
the following conditions hold:

(I) ‖KP (I − Q)Nx‖X ≤ M, for all x ∈ X;
(II) For any x ∈ X with Px ∈ ∂Ω0 and ‖(I − P )x‖X < M ,

(3.1) 〈JQNx, JQNx〉 > 0;

(III) There exist a continuous mapping η : Ω̄0 → kerL and a family of contin-
uous mappings ηi : kerL → ker L (i = 1, 2, · · · , N) satisfying

(3.2) 〈ηi(u), ηi(u)〉 > 0, 〈u, ηi(u)〉 6= 0 for i = 1, 2, · · · , N and u 6= 0,

such that for any u ∈ ∂Ω0,

(3.3) 〈JQNu − η(u), η1η2 · · · ηN (u)〉 6= 0;

(3.4) 〈JQNu, JQNu− η(u)〉 6= 0.

Then Lx = Nx has at least one solution x satisfying

Px ∈ Ω̄0 and ‖(I − P )x‖X ≤ M.

Let N be a positive integer. Set P
(N)
2π = {x ∈ C(R, RN) : x(t + 2π) = x(t), ∀t ∈

R}, ‖x‖ = supt∈R |x(t)| = supt∈[0,2π] |x(t)|. Then P
(N)
2π ⊂ BC(R, RN) is a Banach

space.
Let D = diag(B1, B2, · · · , Bn), where

Bj =

(

0 mj

−mj 0

)

.
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Define the operator L : P
(2n)
2π → P

(2n)
2π by Lx(t) = ẋ(t) − Dx(t),

domL = {x ∈ P
(2n)
2π : ẋ(t) exists and is continuous}.

It is not hard to check that L is a Fredholm mapping of index zero. Let J : ker L →
kerL be the identical operator and let P = Q : P

(2n)
2π → P

(2n)
2π be the projections

defined by

(3.5) Px(t) =
1

2π
eDt

∫ 2π

0

eDT sx(s)ds.

Then the (unique) pseudo-inverse of L associated to P , denoted by K : ImL →
domL ∩ ker P , is a compact operator with ‖K‖ ≤ 2π (see [11] for details).

Define the operator N : P
(2n)
2π → P

(2n)
2π by

Nx(t) = (N1x(t), N2x(t), · · · , Nnx(t)),

Njx(t) = Fj(t, x(t + ·)) + pj(t), j = 1, 2, · · · , n.

Then N is continuous and takes bounded sets into bounded sets, and hence is L-
completely continuous. Moreover, Eq.(1.1) is equivalent to the operater equation
Lx = Nx.

It is easy to see that H : R2n → kerL defined by

H(a) = eDta, for a ∈ R2n

is an isometric isomorphism. In this paper, we identify a ∈ R2n with its image
H(a) ∈ kerL, i.e., H(a) = a, a ∈ R2n.

For the sake of convenience, we also introduce the following notations. Let m, l
be some positive integers and H ∈ C(R2, R2). For any real number ρ ≥ 0, we set

(3.6) MH(ρ) :=
1

2π

∫ 2π

0

eAT sH((ρ sin s, ρ cos s)T )ds;

(3.7) MH(ρ, m, l) :=
1

2lπ

∫ 2lπ

0

eAT ( ms
l

)H((ρ sin s, ρ cos s)T )ds.

It is easy to know that for any positive integer m,

MH(ρ, m, m) = MH(ρ)

In what follows, the following lemmas are needed.
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Lemma 3.2 [11]. Let m, l be some positive integers and 0 < r0 < 1. If H ∈
C(R2, R2) is bounded and the asymptotic limits H(±,±) = limr,s→±∞ H(r, s) exist,
then

(3.8) lim
ρ→∞

MH(rρ, m, l) = W H(m, l)

and

(3.9) lim
ρ→∞

MH(rρ) = W H

uniformly for r in [r0, 1].

Lemma 3.3. For any permutation k1, k2, · · · , kn consisting of 1, 2, · · · , n there
exists a family of continuous mappings ηi : R2n → R2n (i = 1, 2, · · · , N1) with

(3.10) 〈ηi(u), ηi(u)〉 > 0, 〈u, ηi(u)〉 > 0, for u ∈ R2n\{0},

such that for any aj ∈ R2 (j = 1, 2, · · · , n),

(3.11) η1η2 · · ·ηN1
(a1, a2, · · · , an) = (ak1

, ak2
, · · · , akn

)

holds.

Proof. It suffices to show that there exists a family of continuous mappings ζi :
R2n → R2n (i = 1, 2, · · · , n1) with

(3.12) 〈ζi(u), ζi(u)〉 > 0, 〈u, ζi(u)〉 > 0, for u ∈ R2n\{0},

such that for any aj ∈ R2 (j = 1, 2, · · · , n) and 1 ≤ j1 < j2 ≤ n,

(3.13) ζ1ζ2 · · · ζn1
(a1, · · · , aj1, · · · , aj2 , · · · , an) = (a1, · · · , aj2 , · · · , aj1, · · · , an),

Define ζi : R2n → R2n (i = 1, 2, · · · , 6) by

ζi(u) = (ζ
(1)
i , ζ

(2)
i , · · · , ζ

(n)
i ),

ζ
(k)
i =























uk, k 6= j1, j2√
2

2
uj1 +

√
2

2
uj2 , k = j1

−
√

2

2
uj1 +

√
2

2
uj2 , k = j2

, i = 1, 2
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ζ
(k)
i =







uk, k 6= j1

((

√
2

2
,
−
√

2

2
)uT

j1
, (

√
2

2
,

√
2

2
)uT

j1
), k = j1

, i = 3, 4, 5, 6

where u = (u1, u2, · · · , un) ∈ R2n, uk ∈ R2, k = 1, 2, · · · , n.
It is easy to see that ζi (i = 1, 2, · · · , 6) is continuous, moreover, (3.12) and

(3.13) hold with n1 = 6. This completes the proof.

We are now in a position to prove our main result.

Proof of Theorem 2.1. Let M = 4π[(
∑n

j=1 M2
Fj

)1/2 + (
∑n

j=1 ‖pj‖2)1/2], then

for any x ∈ P
(2n)
2π , ‖K(I − Q)Nx‖ ≤ M , and hence the condition (I) of Lemma 3.1

holds.
Let ρ > 0, take

Ω0 = {u ∈ ker L : u = (r1ρa1, r2ρa2, · · · , rnρan), as ∈ ∂B1(0) ⊂ R2,

0 ≤ rs < 1, s = 1, 2, · · · , n}.

Then Ω0 is a bounded open set in ker L and

∂Ω0 =

n
⋃

j=1

{u ∈ ker L : u = (r1ρa1, r2ρa2, · · · , rnρan), as ∈ ∂B1(0) ⊂ R2,

0 ≤ rs ≤ 1, s = 1, 2, · · · , n, rj = 1}

For x ∈ P
(2n)
2π with xj(t) = rjρeBjtaj + x̄j(t), aj ∈ ∂B1(0) = {a ∈ R2 : |a| =

1} ⊂ R2; x̄ = (x̄1, x̄2, · · · , x̄n) ∈ ImL, x̄j(t) ∈ R2, ‖x̄j‖ ≤ M, j = 1, 2, · · · , n, it is
not hard to verify that

(3.14) JQNx = ((JQNx)1, (JQNx)2, · · · , (JQNx)n),

(3.15) (JQNx)j = eBT
j τj Yj(ρ, akj

, rkj
) + Xj(x) + pj(mj),

where

(3.16) Xj(x) =
1

2π

∫ 2π

0

eBT
j sGj(s, x(s + ·))ds,

(3.17) Yj(ρ, akj
, rkj

) =
1

2π

∫ 2π

0

eBT
j sHj(rkj

ρeBkj
sakj

+ x̄kj
(s + τ))ds.
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By using the fact that ‖x̄kj
‖ ≤ M and a similar argument used in the proof of

Lemma 3.2, it is not hard to show that

(3.18) lim
ρ→∞

|Yj(ρ, akj
, 1)| = |W Hj (mj , mkj

)|

uniformly for akj
in ∂B1(0) ⊂ R2 and ‖x̄kj

‖ ≤ M .
It follows from (2.7) and (3.16) that

(3.19) |W Hj (mj , mkj
)| > MGj

+ |pj(mj)| ≥ |Xj(x)| + |pj(mj)|

If rj0 = 1 for some j0, then (3.14), (3.15), (3.18) and (3.19) imply that for ρ
sufficiently large,

JQN(x) 6= 0.

Thus, we have proved that for ρ sufficiently large,

JQN(x) 6= 0

for any x ∈ P
(2n)
2π with Px ∈ ∂Ω0 and ‖(I − P )x‖ ≤ M , that is, the condition (II)

of Lemma 3.1 also holds.
Define the mapping η : Ω̄0 → kerL by

η(u) = (η(1)(u), η(2)(u), · · · , η(n)(u)),

η(j)(u) =
1

2π

∫ 2π

0

eBT
j sGj(s, r1ρeB1(s+·)a1, · · · , rnρeBn(s+·)an)ds + pj(mj),

u = (r1ρa1, · · · , rnρan), aj ∈ ∂B1(0) ⊂ R2, 0 ≤ rj ≤ 1, j = 1, 2, · · · , n.

Then it is easy to see that η is continuous.
Let βj (−π < βj ≤ π) be defined by

sin βj =
W

Hj

1 (mj , mkj
)

|WHj (mj , mkj
)| , cos βj =

W
Hj

2 (mj , mkj
)

|WHj (mj , mkj
)|

here
WHj (mj , mkj

) = (W
Hj

1 (mj , mkj
), W

Hj

2 (mj , mkj
)).

Let N2 be a positive integer satisfying

∣

∣

∣

∣

τj − βj/mj

N2

∣

∣

∣

∣

<
π

2mj
, j = 1, 2, · · · , n.
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Define ηi : ker L → ker L (i = 1, 2, · · · , N2) by

ηi(u) = (η
(1)
i (u), η

(2)
i (u), · · · , η

(n)
i (u)),

η
(j)
i (u) = eBT

j γj uj , γj =
τj − βj/mj

N2
, j = 1, 2, · · · , n,

where u = (u1, u2, · · · , un), uj ∈ R2 (j = 1, 2, · · · , n). Then it is clear that ηi (i =
1, 2, · · · , N2) is continuous and (3.2) holds.

By Lemma 3.3, we can also define ηi : kerL → ker L (i = N2 +1, · · · , N2 +N1),
which are continuous and satisfy (3.2), such that

ηN2+1ηN2+2 · · · ηN2+N1
(a1, a2, · · · , an) = (ak1

, ak2
, · · · , akn

)

holds for any aj ∈ R2 (j = 1, 2, · · · , n).
In the sequel, we assume that u = (r1ρa1, r2ρa2, · · · , rnρan) ∈ ∂Ω0, aj ∈

∂B1(0) ⊂ R2, 0 ≤ rj ≤ 1 j = 1, 2, · · · , n. Clearly, we may assume, without
loss of generality, that rkj0

= 1 for some j0.

Let αj = αj(aj) (−π < αj ≤ π) defined by sin αj = a
(1)
j , cosαj = a

(2)
j , where

aj = (a
(1)
j , a

(2)
j ).

Therefore, we have

(3.20) η̄(u) := η1η2 · · · ηN2+N1
(u) = (η̄1(u), η̄2(u), · · · , η̄n(u)),

(3.21)

η̄j(u) = rkj
ρeBT

j (τj−βj/mj)akj
= ρrkj

eBT
j τj eAαkj WHj (mj , mkj

)/|W Hj (mj , mkj
)|

(3.22) ξ̄(u) := JQNu − η(u) = (ξ̄1(u), ξ̄2(u), · · · , ξ̄n(u)),

(3.23)
ξ̄j(u) =

1

2π
eBT

j τj

∫ 2π

0

eBT
j sHj(rkj

ρeBkj
sakj

)ds

= eBT
j τj eA(mjαkj

/mkj
)MHj (rkj

ρ, mj, mkj
).

It follows from (3.20)-(3.23) that

(3.24)

〈ξ̄(u), η̄(u)〉

= ρ

n
∑

j=1

rkj

|WHj (mj , mkj
)| 〈W

Hj (mj , mkj
), eA$(j)αkj MHj (rkj

ρ, mj, mkj
)〉.
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where $(j) =
mj−mkj

mkj

.

Since |αkj
| ≤ π and |mj − mkj

| < 1
2mkj

, we have

∣

∣$(j)αkj

∣

∣ ≤ |$(j)π| < π

2
, j = 1, 2, · · · , n.

Hence,

〈WHj (mj , mkj
), eA$(j)αkj WHj (mj , mkj

)〉 = |W Hj (mj , mkj
)|2 cos

(

$(j)αkj

)

(3.25) ≥ |W Hj (mj , mkj
)|2 cos ($(j)π) > 0,

For j 6= j0, we set

I0
j =

[

0, |W Hj0 (mj0 , mkj0
)| cos ($(j0)π)/(4nMHj

)
)

,

I1
j =

[

|WHj0 (mj0 , mkj0
)| cos ($(j0)π)/(4nMHj

), 1
]

,

then by (3.24), and noting that rkj0
= 1, we have

(3.26) 〈ξ̄(u), η̄(u)〉 = ρ [Z0 + Z1 + Z2]

where,
(3.27)

Z0 =
1

|WHj0 (mj0 , mkj0
)| 〈W

Hj0 (mj0 , mkj0
), e

A($(j0)αkj0
)
MHj0 (ρ, mj0 , mkj0

)〉

(3.28)

Z1 =
∑

j 6=j0,rkj
∈I0

j

rkj

|WHj (mj , mkj
)| 〈W

Hj (mj , mkj
), eA($(j)αkj

)MHj (rkj
ρ, mj , mkj

)〉

(3.29)

Z2 =
∑

j 6=j0,rkj
∈I1

j

rkj

|WHj (mj , mkj
)| 〈W

Hj (mj , mkj
), eA($(j)αkj

)MHj (rkj
ρ, mj , mkj

)〉

Since MHj (rkj
ρ, mj , mkj

) → W Hj (mj , mkj
) (ρ → ∞) uniformly for rkj

in I1
j by

Lemma 3.2, we have

(3.30) Z2 > 0,

for large ρ.
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By the Schwartz inequility, we also find

(3.31) |Z1| ≤
∑

j 6=j0,rkj
∈I0

j

rkj
MHj

≤ |W Hj0 (mj0 , mkj0
)| cos ($(j0)π)/4.

Therefore, it follows from (3.26)-(3.31) that for ρ suffciently large,

〈ξ̄(u), η̄(u)〉 > 0.

Thus, (3.3) holds for any u ∈ ∂Ω0.
On the other hand, it is not hard to show that

〈JQNu, JQNu− η(u)〉

=

n
∑

j=1

|MHj (rkj
ρ, mj , mkj

)|2

+
n
∑

j=1

〈MHj (rkj
ρ, mj, mkj

), eAT (mjαkj
/mkj

)eBjτj Xj(u)〉

+

n
∑

j=1

〈MHj (rkj
ρ, mj, mkj

), eAT (mjαkj
/mkj

)eBjτj pj(mj)〉,

where

Xj(u) =
1

2π

∫ 2π

0

eBT
j sGj(s, r1ρeB1(s+·)a1, · · · , rnρeBn(s+·)an)ds.

By using the Schwartz inequality, it follows that

〈JQNu, JQNu − η(u)〉 ≥
n
∑

j=1

|MHj (rkj
ρ, mj, mkj

)|2

−
n
∑

j=1

|MHj (rkj
ρ, mj, mkj

)|[MGj
+ |pj(mj)|]

=
n
∑

j=1

[|MHj (rkj
ρ, mj, mkj

)| − 1

2
(MGj

+ |pj(mj)|)]2

− 1

4

n
∑

j=1

(MGj
+ |pj(mj)|)2.

Since rkj0
= 1 for some j0, and MHj0 (ρ, mj0, mkj0

) → W Hj0 (mj0 , mkj0
) (ρ → ∞),

it follows from (2.7) that for ρ sufficiently large,

〈JQNu, JQNu− η(u)〉 > 0.
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Thus, (3.4) also holds for any u ∈ ∂Ω0.
By virtue of Lemma 3.1, Eq.(2.1) has at least one 2π-periodic solution and the

proof is complete.

Finally, we give an example to illustrate our main results.
Example Consider the system

(3.32)























































x′
1 = x2 + x3/(1 + x2

3) + arctan x1 + p1(t)

x′
2 = −x1 + 3 arctanx4 +

1

2
arctanx2 + p2(t)

x′
3 = x4 + x5e

−x2

5 +
√

2 sin x3 + p3(t)

x′
4 = −x3 −

√
6 arctan x6 +

√
2 cos x3 + p4(t)

x′
5 = x6 + arctan x5 − 2 arctanx1 + p5(t)

x′
6 = −x5 +

1

2
arctan x6 − 2 arctanx2 + p6(t)

where pj(j = 1, 2, · · · , 6) are continuous, 2π-periodic functions. By Corollary 2.1,
it is easy to check that Eq.(3.32) has at least one 2π−periodic solution provided

√

|c1|2 + |c2|2 + |c3|2 <
√

6 −
√

2

2
− 1

4
√

2

√

5π2 + 32,

where

ck =
1

2π

∫ 2π

0

(

cos s − sin s
sin s cos s

)(

p2k−1(s)
p2k(s)

)

ds, k = 1, 2, 3.
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